Loading...

enron2008.2 壮歌德/王卓妮

回顾美国历史上最大宗,且轰动世界的公司破产案——安然公司(700亿美元)破产案,如果之前做一个简单的低碳经济评估,那么该公司的财务就不会出现那样的问题。碳循环基本理论在初中和高中课堂已经教授50年,但是,这一直被作为一件令人好奇的情,且与人类追求财富甚至福利无关。在其概念被扩展并重新评价之后的今天,它正被作为指导发展决策的一种工具。

在2008年,不仅企业,而且国家甚至可能整个世界都将遭遇金融危机。在每一次或大或小的金融危机之中,如亚洲金融危机、次贷危机甚至大萧条,最终结果都“返璞归真”(back to fundamentals)。其实,用碳循环就可以描绘我们实际的自然世界。中国也在寻找所谓的“真”,虽然是以科学发展观展望经济发展的方式。

中国和世界探寻发展的科学路径

2007年10月是中国历史上的重要里程碑,中国领导终于解脱“加州无忌增长模式”(The California Growth-at-any-cost Model)的束缚。希望不再发生类似无锡几百万家庭流出“绿色有味”的自来水事件。此外,国家发展与改革委员会主任马凯在2008年1月26日的重要会议上也,说到“不掩盖矛盾”。

现在,科学家已经建立了非常强大而实用的全球碳元素流动模型——其中的碳以重要化合物形式出现在模型之中,以此来展示系统令人惊奇的一面,这个系统正是我们称之为环境和我们现在必须承认的作为全球经济子集的家庭的组合。 几个世界顶尖的研究中心,在过去几年内,以开放和合作的方式勾勒了以上的情景,这幅情景描绘出人类实际经济进程的发展是多么迅速。最终勾画出的情景却让人类自惭形秽——人类可为和不可为之处是如此的准确和无懈可击。

碳化学:简单,令人惊异也让人惭愧

碳是一种特别的元素。碳元素拥有6个资子中子,正是这不可思议的数字“6”使它这种六边形形状的元素可以与两位化学元素之星——氢和氧化合。我们的身体去水变干后,一半的重量来自碳,特别是骨骼中的碳酸盐。碳与我们的现代化生活紧密地交织在了一起——我们主食的主要成分是碳水化合物,所有的化学燃料都是碳氢化合物。碳在我们生活中无处不在。

可是,令人咂舌的事实是,世界上碳原子的数量是确定的。不过,总量确切是多少无关紧要,因为大部分碳原子深藏于地核和深海。我们所处的生物圈所发生的一切完全是可以解释的(accountable),并且它表明人类目前正处于“负债”状态。其间的悬殊非常大,不管对于那些热衷于赚钱的金融家而言,还是对于期望货币供应上涨来缓和拜金思想的政府而言,不论政府的意图多么美好,碳都是一剂上等的缓解良药。

对于碳,我们有两种简单的印象,一个是作为燃料,一个是作为温室气体。政策制定者和政治家们“沦陷”于其定义和数学运算之中,然而,事实是只有“量入为出”,我们才能维持生活。但是,也不要因为这些数字而感到担忧。科学家计算积聚的碳以克计(petrograms),也就是1000 000 000 000 000克。如果以秒计量流量会更容易些:农业和林业中碳原子以全球每秒220吨的速度由太阳光照固定到植物之中。与此同时,我们以每秒270吨的速度燃烧碳氢化合物燃料。我们的生物圈能以每秒320吨的速度吸收和处理碳,但却无法处理剩下的10吨的碳原子,因为它们以二氧化碳的形式存在,所以只能进入我们的大气之中。

斯坦福大学 火用 行动

斯坦福大学是提出该科学的著名机构,在他们2007年10月的“全球气候和能源项目”中,发表了一个复杂的图表,其中展示了碳元素流程中大大小小错综复杂的网络。整个图表只是全球火用流量、存量和消亡的图表的子图。过去几年间,科学迫使人们重新分析已有的认识,并让懂得化学和数学的政策制定者注意到这一点。科学界已提出了能量这个概念,它在实验室中非常的有用,但有时可能误导经济分析。物理学家都知道能量不能创造或消亡,因而,经济学家们可能非常想知道它成为稀缺商品,甚至有时成为国家间战争的根源的原因。在经济分析中,我们所说所指的实际上是有用的能量,对此Zoran Rant在1956年提出了火用的概念。所有物质都包含非常巨大的能量并锁定在其化学键中,而更大的能量存在于其原子核中。实践中,如加热、照明和运输这些功能,并不能释放我们所期望获得的有用能量。真相实际上非常简单,科学家并不屑于指出,但是经济学家和政策制定者却常常看不明白:

燃料的分类是根据碳氢化学键的长短松紧来确定的。燃烧过程中,无论是腹中的糖类,烧柴火堆中的木纤维,还是发动机汽缸中的汽油,碳元素重新结合氧(生成二氧化碳或一氧化碳)形成更紧密和牢固的化学键。天然气的四个C-H化学键加上两个氧分子的化学键,得到27个电子伏特。这9个原子燃烧之后重新组合,生成物中有一个二氧化碳分子外,还包含其它化学键,共35个电子伏特。这种能量释放方式(最好称之为有用的能源,或火用)是不同的,因为这8个电子伏特,并且,在可以观察的宏观层面而言,1千克的天然气可以产生约40兆焦的热能。大部分燃料,包括人类食用的谷类和土豆,电厂的电煤、拖拉机的柴油,每克所包含的C-H化学键数量大致相当,并能释放约40兆焦的火用。

碳氧化学键的作用力很强(一氧化碳有三个化学键,在普通分子中其作用力非常强),只有在光合作用过程中,受太阳发出的光子的影响,氧才能从中释放出来。

全球环境下的全球经济:环境就是系统

经济学和科学在过去200年的学科发展进程中存在一个共同缺陷。这并不陌生,也不是一种批判,只不过是该纠正的时候了。经济学的奠基人理性地开始理解个体、企业和产业,并只在国家福利的范围之中考虑。从这个角度出发,看似微观经济学加起来就是宏观经济学。对此的所有问题,经济学家发明了委婉的说法——外部性,如果我们对外部性探究问底,现在它就是每年成千上万吨无法处理的废弃固体和液体,以及漂泊在我们的空气之中的气体。从全球的观点来看,我们现在能看到的是,个体和个别国家在追求利润最大化过程中,可能没遵循鲍尔丁宇宙飞船地球的最佳模式。在科学视野里,既然地质学家、植物学家、动物学家以及其它学家一致认为我们的地球是火热的,充满了活力,其各种活力为各类相互交叉的学科所争相研究,那么就必须加以重新思考让教科书涉及该系统和环境。令人不安的是,目睹热力学书籍中使用的公式,仍然是研究人员感兴趣的那个系统,并且,“环境”也仍然是指的是过去所说的“环境”。小规模的试点是好的开始。但是如果能推及到小范围之外,那么经济学家和科学家就能开展合作,安装足够的空调来消除全球变暖。

言语与数字难尽其意

我们的现代社会错综复杂,难以勾勒描绘。全球GDP大约60万亿美元。我们,每年燃烧180亿吨的化石燃料。我们被告知,现在每一秒都增加数千吨的无形气体(我们祖先称之为“青烟缕缕”),同时很可能产生极端气候和灾难。大量信息蜂拥而至,一张合成的卫星图片在此给与了一丝喘息的机会,这张图片详细地描绘了测量大气中一氧化碳总量的结果。这些图片必须仔细处理,日期、地层和具体污染物选择的不同将导致变好或变坏的情景。但是,就其本质而言,该图片上可以看到中国工业地区上空的一氧化碳浓度非常高,并且蔓延到朝鲜半岛、日本甚至美国。这是一种图解工具,它鼓励通过合作实现全球低碳经济目标。

安然的“洗碳”账户

认识基础化学的现实和对于人类行为的严格局限性,是一些市场体系下创造性的财务账目文化的冷静剂,而2001年安然公司在这方面达到顶峰。安然公司原本是休斯敦的一家天然气公司,核心业务在于管理沼气储存并输送至客户。甲烷是最简单碳氢化合物,由一个碳原子和四个氢原子构成。明白沼气的储存、运输和消费——当科学家提到燃烧时经济学家使用“消费”这个术语——之中的数学非常容易。安然公司高级执行主管是会计、市场营销和贸易的研究生,他们认为,学科学出身的员工愚钝并受旧思想的禁锢。首席执行官曾经引见一位专家给他的客户,这位客户在石油天然气方面有30年的经验,之后他补充说,“如果他无法从中获益,他早就不做了!”

安然无法追踪其实物资产,创造了金字塔般的债务,却被伪装为利润。亚瑟·安达信的审计人员被威逼受诈骗,也被洋溢于商业期刊的赞美所迷惑。得克萨斯伙伴(Fellow Texan)和美国总统亲切地称呼安然的主席他的小名“Kenny”。然而,如果有人模仿童话《皇帝的新装》中的那个天真儿童,问一句碳在哪里,那么就会发现那些高级执行主管实际上一丝不挂,如果还能询问的早些,结果肯定好过Kenny的暴死,副主席的自杀和首席执行官的终身监禁。

公司也踏进了发电领域,这也是场纯粹的骗局,锁定在加州,让安然拥有最便宜的电价,却谎称电力紧张,然后以高额价格在州间出售,妄图缓解困境。事实上,交易中不存在真实电力,没有碳原子在燃烧。局内人爽快地称之为“洗碳”。

近期行动和中国的角色

实现降低碳燃料的使用,降低碳气体排放的现实需求在不断地加快步伐。当前,看起来,联合国政府间气候变化专业委员会过去所估计的危险过于保守。相比之下,英国的斯特恩评估的信息更牢靠。斯坦福大学《2007年全球碳流程和积累》报告发布了严酷的事实。在2008年2月21日,澳大利亚政府加诺特报告(Garnaut Report)描述了重大灾难很可能在“商业活动一如既往”情景下发生,不过也强调了实现低碳经济的积极作用。报告主笔人是一位国际上备受尊敬的经济学家,曾经是澳大利亚驻中国的大使,他极力将中国加入到报告之中,认为这是任何全球问题解决之道的关键所在。具有讽刺意义的是,这位前大使在北京的第一秘书现在正是澳大利亚新总理,中国的角色如此重要并非巧合。2007年11月选举成功之后,陆克文(Kevin Rudd)总理第一份官方法案就是认可《京都议定书》,给另一个弃权者——美国以有力一击。当然,布什是最后的顽抗者,无论下届入住白宫的是谁,都将明智地负责地面对这些问题,因为美国具有最大的碳吞吐量。澳大利亚总理任命的气候变化部长黄英贤(Penny Wong),是一名海外华人,在未来的几个月内,我们可预见到的是,澳大利亚的领导将来到北京,与中国一起探寻全球经济背景下碳减排的途径。

2015-2
15

Human activity can be measured by the number of carbon atoms that have bonds with hydrogen atoms traded for bonds with oxygen atoms.  This applies to measuring every breath you take, through to all the actions done in a day. It can be aggregated out to families, communities, cities, nations – the world, and can be aggregated through the years to sum up all the activities, encompassing past capital formation.  This approach truly zooms from the very micro- to the global, historical accretive macro-economic.

2015-2
15
In:Diary by
Tags:

Sunday 15/02/2015 Went to church and prayed for my loved ones and goodness in the world.  Bookshop. Noodles. Walk in the park. Goodness was in my world.Take me to church Not much left

More …

More …

经济学需要反思。查阅记录可以发现:发生在美国海岸的英国石油公司(BP)石油泄漏将增加400亿美元的GDP,这意味着我们需要进行某些经济核算工作。中国各省习惯于夸大经济增长量来证明他们善于理财,以得到国家更多的资助。2008年8月华尔街上的大银行倒闭,受其牵连的金融界奇才们提议约需8000亿美元的激励计划但是却从未给出他们提出这个数目的理由。这其实更像是一个魔术,,因为它既非诺克斯城堡的黄金国库储备的财力,也非今后征税所能支持的政策。大部分的激励计划资金甚至都不是印刷出来的纸币,只是电脑设备的“嘟嘟声”,是传送到各州基础设施基金和给破产了的汽车大亨的电子指令。最近的就是欧元主权债务危机,由于一些无中生有的新贷款而再次被推迟。看来,我们记录美元数据的方式需要反思。

经济领袖就像老僧人一样,正在滔滔不绝的谈论“恢复”,这否认“双下降”的可能性,这只是他们对更为持久的第二次经济崩溃的恐惧的最滥的婉辞。如果我们继续尝试外推当前生活方式和基于现有化石燃料技术的所谓的增长,那么,这将不仅仅是下降,增长更是绝对不可持续的。我们的世界经济将成为一片荒地,就像电影《疯狂的麦克斯》(Mad Max)中所描述的那样。我很愿意成为一名乐观主义者,并渴望整个中国、以及印度和非洲都成就深圳奇迹。这种新技术和金融魔术可以遍及世界各处的原料天堂。但是,一旦我们考虑到全球,我们的世界就必然有一个终结。人类,就像在一个大球上的蚂蚁,操控着这个星球表面一层薄薄的土地、水和空气。虽然我们渺小、世界看起来庞大,我们可以在新世界和殖民地进行掠夺,且经济学家相信资源措措有余,可是,现在是时候承认现实了。我们正在以显著规模毁坏着我们的栖息地。在一个篮球大小的地球仪上,我们的世界,就是下至12公里深,上至12公里高,在地球仪上约是半毫米厚的空间,这个空间脆弱而物质有限。现有技术对碳、水和能源的自然循环造成了压力,而这些循环渐进的变化可能会使灾祸加剧。目前极端的洪水和干旱、气温,正是迫在眉睫的事端的前兆。我们正向水中“投毒”,空气的污染已经到了接收和反射的太阳光线双向受阻的程度,这显著地影响着我们的气候。那些愚昧自私的人可以比作心中摒除了科学的布莱思傻瓜,困在电梯中的他们抽着烟,暴饮成箱的啤酒。我们的生活不得不伴随着各种排放物。

寻觅经济过程的非货币量度

我们需要了解的惊人真相是,钱不会解决我们当前和今后的困境。过去以美元计量方法推算的增长数据并不够可靠。自然不会仅仅因为我们宣布了政客们的财务顾问根据想象编造出来的新激励政策而解救我们。在过去的三十年,中国发现了西方逐步演变而来的发展模式是基于一个假设,即污染行业在欠发达地区受欢迎,而其他地方可随时满足其资源需求。到时,当轮到中国遵循这种发展模式时,地球可开采之地所剩无几,也没有人视污染为一种外部性。

纸币是一种绝妙的发明,方便携带,可以交换实物和服务,可以贮存甚至借贷,还可以让我们计算财富,彰显福利状况,尽管后者的联系微妙。比起一群牛、一幢公寓楼或成堆的金锭,纸币更容易被盗窃和伪造。过去十年,伪造账目和电子市场促使犯罪以指数级增长。伯纳德·麦道夫(Bernie Madoff)从熟人手里骗取了上百亿美元,并从股息中取20%付给新一波贪婪而又轻信的不可思议“投资者”,直到盗窃总额达到500亿美元。

因为这样,全球金融危机分为两组观点,一组是金融家/经济学家只是高谈阔论数以百万计的美元的增加,另一组为真实经济辩护着。第一组告诉奥巴马需要更多赌资才能走出困境,要不然就飞到上海去做“顾问”,就像跳蚤从一个尸体离开来到下一个尸体。

测度真实经济

人们所寻觅的用来衡量真实经济的度量并不是美元。一种笨拙的办法是使用重量。中国粮食出口以数亿吨计——大米,小麦和玉米,其中土豆占25%,以均衡了热量值。2009年总计达5亿3082万吨。英格兰银行曾经在英镑纸币上印上了用纸币可以在柜台兑换相应盎司黄金的承诺。全球金本位来了又走了——那时,那时,财富是用金锭来衡量的。然而,在中东石油利益集团能以美国国库担保的一盎司73美元的价格买进几船的金锭时,这就证明了金本位的不堪一击。金本位下的石油危机在美国爆发,导致现实主义者尝试使用能源的某种形式来测度经济状况。目前,已经有以公吨石油当量(toe)、公吨煤当量(toc)、焦耳、卡路里和英国热量单位(BTU)为衡量单位的核算。这事实上仍然是在能源密集行业测度能源效率的工作。例如,要生产1吨的锌锭,需要投入1.9吨的精炼锌和使用189.7亿焦耳的能量。这对精炼厂管理员而言是有效甚至是至关重要的信息,但对经济学家和政策顾问却毫无意义。会计拿着这些数据,它们本该能反映成账簿中的美元,但对他们来说只要看起来没问题就放过——不屑一顾!

崭新的方法

目前,中国科学家团队已经掌握了一种新的度量方法。该方法基于能源分析和物质流分析,但使用了基于实用主义基础概念的普适性核算新单位,该单位客观而且科学。首先,我们要明白中国人是被迫走进这项研究的。他们面临令人失望的市场,拥有实用唯物主义的传统。David Bonovia曾经写道,当中国人看见天上的馅饼,他们想要明白如何把饼弄到地上再吃掉。清华大学环境科学与工程系的石磊教授带领其团队进行物质流分析、资源跟踪研究,跟踪的资源包括水、空气这样充足的资源,也包括经济学家称之为“物品”(goods)而科学家认为也是“垃圾”(bads)但却又需要购买的东西。事实上,从热力学第二定律,我们能够确信,将物品和垃圾求和,总额比之前开始的状况恶劣。只有在垃圾可以处理(比如,忽略或清扫地毯下的垃圾,或倾倒在邻居后院),我们才能将物品称之为好物品。就像中国人民大学环境学院院长马中教授所强烈推崇的那样,物质确实守恒。投入的每一个原子都可以用输出的原子来记录。当人们化作轻烟时,通常指消失了,但是,CO2并没有消失。在这个过程中,两个氧原子(好的)与一个碳原子结合形成了排放物(坏的)。

这有一个重要又有趣的故事。在20世纪50年代的东欧,斯洛文尼亚人Goran Rant被工业污染物呛到了,于是,他写了一篇文章,指出了能源核算隐藏了没被揭示的东西,之后提出了一个区别无用能(熵-坏东西)和有用能(好东西)的新概念,他所提出的术语称为火用。波兰科学家Jan Szargut,想出了一个概念并发表了上百篇热力学工程学的文章,论述发动机、热水器和冰箱的能效。他的著作都是以以波兰文发表的,甚至当他晚年访问美国以英文发表时,许多信息因翻译、复杂的概念而流失了,还有一部分流失是因为文章展现了传统发展的反面。

那时候,中国与东欧交好,欣然接受了这个新概念。2007年,西方发展模式已遭遇碰壁,中国将具有开创意义的科学发展观写进了党章。这是对西方模式的明确否决。中国城市的智囊团提出和研究新技术——太阳、水藻、风和潮汐。除了新潮的实用技术之外,评估成本的新方法是必须的。而美元不起作用。Szargut用他的异国语言提出了一种新范式:不仅燃料能用焦/千克来衡量,而且,将一种天然物品转换成一种商品的过程,也能计算资源每千克消耗的能量(焦耳)。例如,铁矿石只是一种红色泥土,在澳大利亚和巴西有成百上千英亩。只要授予了或者取得了行政执照后,基本就可以免费取走。理论上,从1.4kg铁矿石中提取出1kg的铁所消耗的能源成本是670万焦。这就是生产1kg铁的能源消耗成本。普通的汽车,由上百千克的铁组成,还有铜、铝、玻璃和塑料。我们还包括了设计所消耗的体力劳动和人力付出。这是估计生产汽车能量成本的有难度却可行的做法。因此,我们或者说汽车成本是1000亿焦耳或19000美元。在一个正常运作的市场中,美元价值更合适。

在一个机能失调的市场中,零的数目反复无常,那么,做一项能源消耗核算将呈现一些现实情况和方向。现在中国,北京大学陈国谦教授以及北京师范大学陈斌教授双双带领其团队,致力于企业、地区、国家和全球的能源消耗核算的合作。与微观和宏观经济不同的是,这些结果是可以加总的。它检验了我们是否走在正确的发展道路上。

讽刺而偶然的是,人与自然和谐在中国有着悠久的历史,千年前书吏的记载就展示了和谐的缩影。人与自然的合一高深莫测、不可思议。

盲目追求美元的GDP增长就是愚蠢地接受了400亿美元的BP石油泄漏。盲目追求消费以提高需求和增长就像是被困在电梯中的人,他们抽着烟,暴饮成箱的啤酒,而对之后的事毫无所知。燃料的能量消耗核算以及到2010年我们所造的汽车,所建设的建筑物、城市、国家,甚至地球的能量成本估算都让我们对我们的福利有了一种清醒评估。这就是经济范式转变,就是中国政策顾问们正在做的事。

Economics needs rethinking.  Check the record:  The BP oil spill off the US coast will add $40 billion positive to GDP, and that shows something needs to be done about economic accounting.  Chinese provinces routinely inflate their growth accounts to suppose they are good managers and deserve more national funds and support.  When big banks on Wall Street crashed in August 2008, the financial wizards involved in the failure advised a stimulus of about $800 billion, a number whose background that was never explained.  It was in fact magic, not backed by treasury reserves, gold at FortKnox, nor even promises of future taxing.  Most of it was not even printed paper money, but computer bleeps transferred to infrastructural funds in the various states, and the busted auto giants. The latest papering over of imminent disaster has been the Euro sovereign debt crisis, again postponed by making up some new loans out of thin air.  The way we record dollar data needs a rethink.

The economic gurus, like shamans of old, are talking up “recovery”, and denying the possibility of a double dip, which is just the sleaziest euphemism for their fear of a second more-permanent crash.  If we keep trying to extrapolate current life styles and so called growth based on existing fossil fuel technologies, it will not be merely a dip, and growth will be absolutely unsustainable.  Our world economy could become a wasteland as depicted in the Mad Max movies.  I would love to be an optimist and dream that all of China, and India and Africa too, could all be like the Shenzhen miracle.  That new technologies and financial wizardry could extend material paradise all over the world.  But as soon as we think global, our world has an end.  Like ants on a big round ball, humans operate in a thin layer of land, water and air around the planet.  Though when we were small and the world seemed large, and there was a New World and colonies for the taking, economists deemed resources “abundant,” it is now time to acknowledge the reality.  We are clearly desecrating our habitat on a noticeable scale.  On a model globe the size of a basketball, our operating world, drilled to 12 km down and flying up to 12 km high, would be half a millimeter thick , and is materially finite and fragile.  The natural cycles of carbon, water and energy are stressed by existing technologies and gradual changes may tip over to catastrophes.  Present extremes of flood and drought, and temperatures, are a manifestation of what may be imminent.  We are poisoning our water and polluting air to the extent that incoming and reflected rays of sunlight are impeded both ways, which noticeably affects our climate.  Blasé fools who dismiss the science can be likened to ignorant selfish people guzzling a carton of beer and smoking in a stuck elevator.  We have to live with our emissions.

The search for non-monetary measurement of economic processes

The striking fact we need to grasp is that money will not solve our current and future predicament.  Extrapolating past growth data, measured in dollars, will not suffice. Nature will not bail us out just because we announce new stimulus packages conjured in the imagination of the politicians’ financial advisors.  China has discovered in the last 3 decades that the model of development evolved by the West was based on an assumption that industries that grew dirty would be welcomed in undeveloped places, and that other places could always supply the resources in demand.  By the time it became China’s turn to follow this development path, there were few places left on Earth to exploit, and there is nobody left to accept pollution as an externality.

Money is a wonderful invention, convenient to carry and trade for real goods and services, to save and even borrow.  It also allows us to count wealth, and to imply wellbeing, though the last link can be tenuous.  Money is much easier to steal and fake than a herd of cattle, a block of flats or bars of gold.  In the last decade, creative accounting and electronic markets have leveraged blatant crime to exponential scales.  The Chief Financial Officer of Enron simply changed billion dollar minus signs to positive.  Bernie Madoff took millions off acquaintances and from that paid out 20% dividends to new waves of greedy trusting incredulous “investors”, till the ripoff totaled $50 billion.

So the Global Financial Crisis has bifurcated opinion, with financiers/economists just talking up more mega sums of dollars, and another group pleading for the Real Economy. The first group are telling Obama to spend his way out of trouble with more play money, or else jetting into Shanghai as “advisors” like fleas fleeing one dead body for the next sucker.

Measuring the Real Economy

The Real Economy people are searching for a measuring stick that is not dollars.  One clumsy method is weight.  China counts its grain output in hundreds of millions of tonnes – rice, wheat and corn, with potatoes weighted at 25% to balance the calorie value. Aggregated as 530.82 million tonnes in 2009.  The Bank of England used to print pound notes with the written promise that it was changeable for ounces of gold at the counter.  A global Gold Standard came and went – a time when wealth was measured in ingots of gold, but proved untenable when Middle East oil interests were able to buy shiploads of gold ingots at a price guaranteed by the US treasury as $73 an ounce.  The oil crisis that came out of the US backed Gold Standard led realists to attempt to measure economies in some form of energy.  There was accounting done in tonnes of oil equivalent (toe), tonnes of coal equivalent (toc), in joules, in calories, in British Thermal Units (BTU).  This actually still works for measuring energy efficiency, and in energy intensive industry.  For example, to produce a tonne of zinc in ingots requires an input of 1.9 tonnes of zinc concentrate and 18.97 gigajoules of energy.  This is useful, even vital information for refinery managers but meaningless to economists and policy advisors.  An accountant sitting on these number would assume they were reflected in the dollars in his books and look right past them.  Dismissively.

A new approach

Now teams of Chinese scientists have grabbed a new approach.  It is based on energy analysis and also material flow analysis, but uses a new universal objective scientific accounting unit based on a pragmatic foundational concept.  First, let us realize the Chinese were forced into this search.  They faced markets that let them down, and had a tradition of functional materialism.  David Bonovia once wrote that when Chinese see a pie in the sky they want to figure how to get it down on the ground to eat it.  Professor Shi Lei of Tsinghua University Department of Environmental Science and Engineering leads teams conducting Material Flow Analysis, tracking resources, including so called abundant ones like water and air, as well as those paid for, through to where economists call  “goods” and to where scientists know there are also “bads”. In fact, from the Second Law of Thermodynamics, we can be sure that adding the goods and bads, the total is always worse off than at the start. Only by disposing of the bads (somehow – ignoring, sweeping under the carpet, dumping in a neighbors backyard) can we call the goods as good business.  As passionately promoted by Professor Ma Zhong, Dean of Environmental Department, RenminUniversity, material does balance. Every atom inputted can be accounted for as every atom out.  To say “going up in smoke” used to mean to vanish, but carbon dioxide does not vanish.  In the processes we do, two atoms of oxygen (good) combine with an atom of carbon as emission (bad).

There is a funny but important story emerging.  In Eastern Europe in the 1950’s, choking in industrial pollution, a Slovenian, Goran Rant, wrote a paper pointing out that energy accounting hides more than it reveals, and put forward a new concept differentiating unavailable energy (entropy – a bad) from useful (good) available energy, an offered the term, exergy. A Polish scientist, Jan Szargut, picked up the concept and published a hundred articles on thermodynamic engineering on energy efficiency of engines, heaters and fridges.  He published in Polish.  Even though in later life he visited the US and published in English, his message was lost, through translation, complex concepts, and because it showed conventional development in a bad light.

China was familiar with Eastern Europe at this time and embraced the new concept.  It was a useful, brilliant idea.  In 2007 the Western development model had hit a brick wall and China wrote into its Constitution the Concept of Pioneering Scientific Development.  This was a specific denial of the Western model.  The word went out to think tanks around Chinese cities:  research and design new technologies – solar, algae, wind, tide. Apart from the smart pragmatic technologies, a new way of assessing cost was needed.  Dollars did not work. Szargut, in his exotic language, had proposed a new paradigm:  Not only fuel can be measured in joules per kilogram, but any resource can be costed in joules per kilogram

in the process of turning from a natural item into an economic good.  Iron ore is just red dirt, and there are hundreds of acres of it in Australia and Brazil. It is almost free for the taking (give or take administrative licensing).  The theoretical calculated energy cost of making a kilogram of iron from 1.4 kg of iron ore is 6.7 megajoules.  This is the energy cost of producing a kilogram of iron.  When we look at a common car, it has several hundred kilograms of iron in it, plus copper, aluminium, and glass and plastics. We also include physical labor and trace back the human endeavor in design.  It is a difficult but feasible task to estimate the energy cost of producing a car.  So we end up either saying the car cost 100 gigajoules or $19,000.  In a properly functioning market, the dollar value is preferable.

In a dysfunctional market, where dinosaurs are prodded with stimulants , and the number of zeroes are made up whimsically, doing an energy cost account will add some reality and direction.  In China now, at Peking University, Professor Chen Gouqian and at Beijing Normal University, Professor Chen Bin, are both leading teams, and collaborating, on energy costs of enterprises, regions, the nation and the globe.  Unlike micro and macro economics, it all adds up.  It shows when we are going in the right or wrong direction in development paths.

Ironically, and fortuitously, China has a long history of man and nature in harmony, epitomized by scribes millennia ago. Inscrutably, inexplicably, Man and Nature are one.

Blind pursuit of growth in dollars of GDP stupidly embraces the BP oilspill as a $40 billion plus.  Blind pursuit of consumption to boost demand and growth is like the fellows in the stuck elevator enjoying a carton of beer and smokes, with no cognizance of the after effects.  Energy costing of fuels and the imputation of the energy cost of what it takes to make a car, a building, a city, the nation, and indeed the Earth we have built on to by 2010, leads to a sobering assessment of our wellbeing.  This is an economic paradigm shift that policy advisors in China have in the making.

 

当前,消费被奉为医治全球金融危机的万灵药。其实,这只是一个病态的解决方案,是目光短浅的经济学家膝跳反射般的本能反应。政治家们很快将明白,消费现有的意味着一点不剩。这就像救生船内的物资,因为我们所生活的地球就是一艘救生船(经济学家并不了解这一点,但聪明的人应该知道)。难道经济学家或政策顾问就无法理解吗——我们就是在一艘完全孤立、资源有限的宇宙飞船上,这艘飞船在真空中疾驰和飞转。就物质资源而言,我的‘‘收获’’就是你的‘‘损失’’。

吃豆者的寓意

我们不应该责备那些生活在两个世纪前的聪明人,他们的驱动政策是建立在无限“新大陆”的构想下。然而,1966年,阿波罗运载火箭上的摄像机镜头捕捉到了我们整个地球生存空间,今天,我们就不能再将我们的思维局限于人类的可持续性问题。我们应该重新反思我们目前的处境。

吃豆者(Pakman)可以看作是一个消费者的缩影,吃豆者是美国上世纪60年代住宅区附近商店柜台屏幕上最早出现的计算机游戏之一。吃豆者只是个漫画形象,圆圈之中有个三角形的嘴巴,他的目标是尽快吃掉在他面前的东西,而且越多越好,即它是个‘‘终极”消费者。这幕情景中有一个问题摆在我们面前:无论前方出现什么东西,消费都是免费的,且越快越好,此外,吃豆者还不会排放废弃物,即无固体废弃物、废水或废气产生。但是今天,如果决策者提倡消费作为解决问题的方法,那么明天的资源将不再免费,这样废弃物就成为亟待解决的问题。

吃豆者的‘‘世界’’是个令人气馁的科学模型。你和我都是吃豆者,各占据了仅0.07立方米的空间。与原始人一样,我们平均每秒吸入1.5升空气,每天饮用3升水,吃下半公斤粮食。没有氧气,我们几分钟就死去,没有水,我们几天内死亡,没有碳水化合物(CxH2xOx),我们也活不了多久。但是,对原始人而言,世界似乎是无限的。尽管没有氧原子、氢原子或者碳原子的再生或被毁灭,不断到来的太阳光子驱动了碳和降雨的自然循环,从而补充了必需的资源。大自然循环利用了小部分的废弃物,甚至一些利用过的水和排泄物也在大自然的“下意识”似的安排中得到了循环再利用。

工业的吃豆者是另一回事。除去人类基本的需求,推动GDP的工艺进程除以全球67亿人口的结果是不可持续的消费和令人恐惧的“三废”的排放。工业吃豆者在平均80米宽、280米长的面积上运动,幸运的是,吃豆者有另外的资源,那就是维持生命必不可少的正常温度和大气调节“设施”——海洋,那么,对我们67亿人中的每个人而言,就是生活在平均280米长、200米宽(和3500米高)的空间中。每一个吃豆者都占据了7.6亿立方米的空间,这看似庞大,可是我们不必为此感激涕零。我们很难想象这个空间的大小,但是,正如我们跨入了2010年,资源和生态服务的现实情况也出现了一幅崭新的景象。这幅景象将加速决策者寻求新技术、甚至新范式的步伐,无疑地,我们不会听从老一辈经济学家采用加速盲目消费来推动增长的建议。

这个星球上的每个人大略使用1040米直径的球体的空气量,在这个低于2米的空间中,吃豆者看起来就无关紧要了。这无疑就是原始吃豆者的情况,并且,那时废弃物是不值得考虑的。对工业吃豆者而言,以今天的消费速度,如果平均每人按一生70年的消费,再把人一生的废弃物都保存起来,这些消费和废弃物对我们有限的自然环境造成了难以承受的负担。下表给出了近似数据。

输入

输出

氧气 O2

1,004

795

H2O

642

792

碳水化合物 CxH2xOx

19

15

二氧化碳 CO2

9

303

化石燃料 CxHy

240

10

下表列出了我们所需要的最基本资源,估算了1个人寿命70岁以吨计的消费量和排放量。

概念的转变

尽管经济学家从未考虑过这个问题,但重要的是我们要承认,物质消费与废弃物总量大体是相等的。理解问题严重性的困惑在于,在历史上,物质从未被理解为化合物,或者叫污染排放的化合物,人们甚至从未意识到这些。经济学奠基人大卫·李嘉图1817年在巨著中论述并断言,因为水资源丰富充足,所以水是“免费”的。甚至现在,政府在评估水资源价值时仍然有困难:有时候水是纯粹的降水或汇入了山间溪流,有时候水却是灾难性的泥水混合的洪水,而经过农场、工厂和家庭使用后,水通常又成为了污染物。20年前西方有句谚语,“随烟化为泡影”,意思是某件事物消失且变得不重要。现在,某些政府愿意为这种“烟”(即二氧化碳)开价每吨20美元,而一些企业声称他们将以每吨70美元价格买来贮存起来或者以某种方式安全处置。

设法合计土地、海洋和空气,无论是以吨计还是以立方米计,都让人左右为难;而市场尝试使用单位供给和需求的交点所决定的价格来解决这个难题。这是目前我们所拥有的最佳有效系统,同时,政府尝试以用公共资源(如水资源、公共用地)的影子定价和处罚排污者来管制经济活动。

但是,别让科学吓倒了我们。一个微不足道的1.65米(平均值)高的吃豆者其实只是一名演员,他像是一个直立的好事者,但他并不是“生物圈”的主宰者,尽管现在他有能力弄点破坏。如果一个人一生所产生的二氧化碳(全球290亿吨/67亿人口×70年),为302吨,变成固态干冰就是差不多边长7米的立方体。我们可以把它埋到沙漠。但是,事实上人排放的二氧化碳散开后组成空气体积的百万分之383。这不会引起中毒但也看不见。而推崇温室理论的科学家们足够大胆地预测,被地球表面反射的光子增加滞留后,将让全球平均气温升高若干度。在哥本哈根气候变化大会上,一个小岛国代表说道:当1.5摄氏度上限的升温被驳回,而采用了2摄氏度的上限时,他哭了。

《熵定律和经济过程》

1971年,哈佛大学印书馆印发了一本具有里程碑意义的著作《熵定律和经济过程》。作者尼古拉斯·乔治斯库-洛根(Nicholas Georgescu-Roegen),是一名经济学家,他花费数十年的时间在他的学科领域取得了相当重要的成就。他主张攻击传统观念,富于创新:他评判两个世纪以前在牛顿力学模型基础上建立起来的经济学——带着神奇发条的永动机是不可能的。他提醒人们,经济过程是单向流动的。1824年,卡诺(Carnot)研究蒸汽机时发现熵现象,1876年吉布斯(Gibbs)重新改进,并总结认为所有的化学过程中熵也都在进行。像热力学第二定律所囊括的那样,熵总是在增加中。幸运的是,在有限的物质环境中,太阳是一个外来源,能补充能量,维持我们的生命活动。

乔治斯库-洛根(Georgescu-Roegen)的书冲击了70年代,随之而来的是环境问题“苏醒”年代(如《寂静的春天》,《增长的极限》和石油危机),于是他受邀走向了世界各地。社会活动家杰里米·里夫金(Jeremy Rifkin)撰写了后续解释性书卷,阿尔·戈尔(Al Gore)为之做了篇序。但那之后,推动力消逝了。主要有以下四点原因:首先,熵是一个难懂的概念,甚至对热力学学生以及用它解决具体实际问题的化学家都如此感觉。当然,熵科学已经超越了如乔治斯库-洛根(Georgescu-Roegen)等老一辈经济学家的眼界。其次,直觉上它一如既往地令人兴奋,但在信息理论、艺术和伪科学领域没有容它之处,在伪科学中它被盗用和贬低。第三,长期看,经济学家所称颂的“市场可以调节”是正确的,在没有熵科学前,消费者最终发现能源低效和污染能够如此的“昂贵”,于是生产过程是被调节了,但却需要花费十年之久。最后,熵对商业和政治而言是一项不利的讯息。吉米·卡特(Jimmy Carter)在1980年讲演经济过程的谦卑时输给了罗纳德·里根(Ronald Regan)。经济学圣经——保罗·萨缪尔森(Paul Samuelson)的《经济学》,就以“Economics”为标题,在1980年第11版专门有一页论述熵经济学,之后就被抛弃,直到目前,第19版才重新出现。

但是,以旧科学为基础的旧经济学需要根据新科学进行更新。热力学第一定律以物质和能量不能被创造和毁灭作为出发点。在我们的地球上,对吃豆者而言,没有任何的原子被创造或毁灭(核工业是个例外)。我们并不生产碳原子、铁原子或氧原子。吃豆者在其有限空间内狼吞虎咽的“进食”并排泄“废物”。在重量上二者完全相等。这就是我们以后所需要的模型。

熵总是增加的,输入只来自太阳,并以一个固定速率补充这个循环。当然,我们碳的生产量远远超过光合作用所能固定的碳,而这正是我们必须理智解决的问题。图1是这个探讨的示意图。

by John E Coulter, translated by Wang Zhuoni

Consumption is now vaunted as the panacea to the Global Financial Crisis.  This is a sick solution and a knee jerk reaction by economists who do not see the big picture.  Hopefully statesmen will see that quickly consuming what you have leaves you with nothing.  Like the provisions in a life boat, because (economist do not know this but intelligent people should) the globe we live on is a life boat.  Don’t economists/policy advisors get it?  We are on a totally isolated, finite, spaceship hurtling and spinning through the vacuum of space.  In terms of material resources, my gain is your loss.

We cannot blame those clever people of two centuries ago who drove policy with a boundless New World vision.  But in 1966 our entire global living space was captured in a camera lens frame from an Apollo rocket and now we can no longer be small minded about our sustainability.  Let us rethink where we are at.

The epitome of a consumer is Pakman, the little bean eater in one of the first computer games appearing as a screen on a table in corner stores in the US in the sixties.  Pakman was just a caricature – a circle with a triangular mouth whose aim was to gobble whatever was in front of him.  The more the better.  The ultimate consumer.  There is just one issue with this scenario, now comes to the fore:  No matter what is out in front for the free taking, the faster the better, Pakman consumes but has no emissions – solid, liquid or gas.  If policymakers are advocating consumption as the solution to today’s problem, tomorrow’s resources will not be free, but the seriously under-addressed problem is waste.  The throughput, equal in mass defined by number of atoms, comes out the backside.  Policymakers need to be responsible for where waste goes.

A Pakman world is a daunting science model.  You and me, as represented by Pakman, occupy a mere 0.07 cubic meters of space.  As primitives, on average we inhale air at 1.5 liters/ second, drink 3 liters water and eat half a kilogram of grain a day.  Without O2, we die in a few minutes, without H2O we die in a few days, and without carbohydrate (CxH2xOx) we can’t live long either.  But for a primitive person, the world seems boundless.  Even though not one atom of oxygen, hydrogen or carbon is created anew, or destroyed, the natural cycles of carbon and rain, driven by incoming photons from the sun, replenish resources needed. The small amount of waste is recycled by nature, and even some used water and excreta recycled by conscious design.

Industrial Pakman is another matter.  Apart from basic human needs, the processes driving GDP divided by global population of 6.7 billion results is unsustainable consumption and horrific throughput of waste solids, liquids and gases.  Industrial Pakman operates on an average surface that is 80 meters wide and 280 meters long, and fortunately Pakman has another resource which is a vital natural temperature and air conditioning service – the sea, and for each of 6.7 billion of us, that averages 280 meters long and 200 meters wide (and 3,500 meters deep).  Each Pakman has an airspace of 760 million cubic meters, which seems so enormous we don’t need to appreciate the fact. It is hard for us to imagine the scale, but as we enter the year 2010, a realistic inventory of resources and the ecological services brings a new view.  A view that should hasten policy makers to look for new technologies, even new paradigms, and certainly not listen to relic economists advising extrapolation of growth by accelerated blind consumption.

A sphere of air averaged for each person on the planet would have a diameter of 1040 meters, and depicting Pakman in it at under 2 meters height makes him seem insignificant.  This was certainly the case for Primitive Pakman, and waste was inconsequential.  For Industrial Pakman, consumption over a life of 70 years and back-up of waste over that lifespan, at today’s rates, can be seen to be putting unbearable burdens on our finite surroundings. Table 1 sets out approximate data

INPUT

OUTPUT

oxygen

O2

1,004

795

water

H2O

642

792

carbohydrate

CxH2xOx

19

15

carbon dioxide

CO2

9

303

fossil fuel

CxHy

240

10

Totals

material balance

1,915

1,915

Table 1 lists the most basic resources we need and estimates the amount in tonnes an individual consumes and emits during a 70 year lifetime.

It is important to admit, though economists never dream of this, that in material terms, physical consumption balances with aggregate waste.  A confusing factor in attempting to comprehend the seriousness of the problem is that historically the substances were not understood as chemical compounds, or in the case of oxygen and pollutant emissions, not even appreciated at all.  Founding economist, David Ricardo, in his 1817 defining tome on resources, pronounced water as “free” because of its abundance.  Even now, governments have trouble valuing water, when sometimes it is pure falling rain or flowing mountain streams, sometimes as disastrous muddy floods, and after farms, factories and households have run it through their systems, often as pollutant. The saying, until two decades ago in the West, “Gone up in smoke,” meant for something to disappear and be of no account.  Now some governments are willing to value that smoke (as carbon dioxide) at $20/tonne, and entrepreneurs are saying they will buy it for storage or some form of safe disposal at $70/tonne.

Trying to aggregate land, sea and air as the three basic phases in physics – solid, liquid and gas in either tonnes or cubic meters is a dilemma that markets try to solve by fixing prices at the intersection of demand and supply curves in whatever units of measure.  This is the best working system we now have, and governments attempt to regulate economic activities by shadow pricing public resources like water and common land, and attempting to penalize polluters.

But let not the science daunt us.  A puny 1.65 meter (average) Pakman is an actor. almost a bystanding interloper, not a master of his biosphere, though now with capability to make a mess of it.  If all the carbon dioxide a person produced in a lifetime (global 29 billion tonnes / population 6.7 billion people x 70 years) – the 302 tonnes of it – were solid dry ice, it would be a cube of sides about 7 meters. We could bury in some desert.  But the emission is a gas, dispersing now to make up 383 parts per million of the volume of the air.  That is not poisonous, and it is invisible.  The scientists promoting Green House theory are bold enough to predict that the increased entrapment of earth surface reflected photons will raise global average temperature by a few degrees, and at the Copenhagen Climate Change Conference one small island representative said he had cried when a ceiling of 1.5 degrees Celsius increase was dismissed for wording that capped at 2 degrees.

I don’t think we can engineer the weather that finely.  But when Pakman gobbles 1900 tonnes of matter and then expels it as waste, that adds up to polluting the environment seriously, and we cannot foretell the consequences.  Climate may well warm, but we really cant foretell the factors at play.  Pollution has many obvious downsides, and pollution close to us is more obvious than that flowing away.

In 1971 Havard University Press published a book of momentous importance.  The Entropy Law and the Economic Process.  The author, Nicholas Georgescu-Roegen, was an economist of decades of respectable contributions to his discipline.  What he advocated was iconoclastic and revolutionary:  He criticized 2 centuries of economics as founded on Newtonian mechanical models – a perpetual motion machine of magical clockwork that was impossible, even in theory.  He reminded that economic processes are unidirectional flows: breathing, refining iron ore into iron, making cars… The phenomenon of entropy, discovered in 1824 by Carnot studying steam engines, and refined in 1876 by Gibbs to include all chemical processes is at work.  Encapsuled in the Second Law of Thermodynamics, entropy always increases.  Fortunately for us, in finite material environment, the sun is an outside source which can replenish energy, and sustain our life-giving flows.

Georgescu-Roegen’s book took the seventies world by storm, coming at a time of environmental awakening (understandings from Silent Spring, Limits of Growth, and the oil crises) and he was feted around continents.  A follow-up explaining volume by activist Jeremy Rifkin had a foreword by Al Gore.  But then the impetus died. Four reasons.  Firstly, entropy is a difficult concept even for students of thermodynamics and chemists who have to use it as an application is solving some specific practical problems.  The building blocks of its science will need to be taken down and restructured, probably needing quantum mechanics, to be of wider use.  Certainly its science was beyond the ken of an old economist like Georgescu-Roegen.  Secondly, as intuitively exciting as it was, it had no practical fit in the fields of information theory, art and the pseudosciences where it was usurped, and debased. Thirdly, the economist chant of “Markets will adjust” is true in the long run, and without entropy science, consumers eventually find out how expensive energy inefficiency and polluting can be, and production processes are adjusted, even if it takes ten years.  Finally, entropy was bad news for business and politics.  Jimmy Carter lost to Ronald Regan in 1980 preaching humility of economic processes.  The bible of economics, titled simply Economics, by Paul Samuelson carried a page on entropy economics in the 1980 eleventh edition, then dropped it up till now in the current nineteenth edition.

But the old crotchety iconoclast was right.  Old economic based on old science needs to be revamped on new science.  Consider this.  The First Law of Thermodynamics sets out that matter and energy cannot be created and destroyed.  So to talk of producing and consuming energy is unscientific.  Joule introduced the concept of energy and it actually conceals what goes on when chemical electromagnetic forces (in fuel) are converted to heat/work.  Though the equation works, it is non reversible, and therein lies its value.   (Horsepower is not the equivalent of horse manure)  The scientific approach is to track exergy conversion to entropy.  On our Earth, for Pakman, not one atom of anything is created or destroyed (except in nuclear industry). We do not produce one atom of carbon, iron, or oxygen.  They are all parts of magnificent (dare I say supernatural) cycles.

So Pakman is in his confined sphere, gobbling goods and excreting bads. In exactly equal tonnages.  That is the model we need from now on. Entropy always increases, and only the inputs from the sun, at a fixed rate, can replenish the cycle.  Of course our throughput of carbon far exceeds the photosynthesis that refixes carbon, and is a problem we need to sensibly address.  Figure 1 is a start for this approach.

 文/John Coulter

翻译/王卓妮(中国气象局培训中心)

在中国农历新年来临前夕,中共中央和中国国务院联合正式颁布了2011年中央一号文件。该文件提出了一个解决中国经济发展中的根本问题,正是这个问题导致了中国农业的长期‘‘落后’’,这与其他经济部门的发展相比实属不对称。

中国农业在许多方面,包括种子质量、肥料和虫草控制、农业机械化,特别是高效营销方面已经跃居世界领先地位,然而,一项棘手的问题却常常被忽视,甚至是忽略掉了。这就是水从河流、大坝等主要水源地到实际农地的水资源配置问题。原因何在?笔者提出以下分析。

中国水利工程的今昔

新中国建立的数十年间,农田组织基本是由规划者操作,理论上他们是出于善意,拥有战略性眼光,然而实际上,他们常常严重疏忽了某些细节,这些细节只有密切接触农田的个体才能观察、获悉并有效应对。

20世纪80年代,中国农村实施生产承包责任制后,个体农业家庭的生产力才被释放出来。农民审视市场,选种种植,辛勤地照料作物。如精心施肥和控制虫草,按要求平整土地和耕作,大棚培育高纬度蔬菜幼苗等。而农民基本不能控制的事是农事耕作所需水的输入。对他们来说,主要有两大水源,一是来自天空,另一个是早前所挖的沟渠。如果这些沟渠仍可用且成本合理,电用抽水机打水的井或许就是农民在现场唯一可以管理的资源。因而,作为农民生产所依赖的生命线水资源,是靠周边农场及农民生活的外界输入。

具有讽刺意味的是,上千年以来,中国就将优良的水资源管理视为天命的表现。治洪、利用有效的水资源供给以缓解干旱的帝王令人钦佩,而若治洪抗旱无能则将受到灭顶之灾,这也将引起臣民对其领导能力的非议。公元前3世纪,一项重大工程项目在长江最长的支流上出色地得到规划和执行,项目将5000平方公里的旱地转变为稻田,成为一个重要的稻米生产基地。因而,郡守李冰也被后人尊为神明,他的塑像和关于他的传说比比皆是。流传至今。如今的中国水利工程师们以他为榜样,竞相建造宏伟工程。新中国大坝修建似乎是一种十足的‘‘痴迷’’行为:“三峡工程”达到世界最大工程项目的巅峰,但现在其水资源管理在南水北调工程面前却‘‘黯然失色’’。当然,中国需要宏观规划水资源管理和配置,需要世界级的水利工程师。2008年5月汶川地震发生后,是水利工程师们乘直升机降临现场,,用现代方法处置因地震形成的堰塞湖水坝,减轻坝中水的庞大压力。无疑,水利工程师们是当代英雄。

增产的理论

水资源利用链的另一端是农民,在中国,平均每家农户有数亩的土地,根据节气将适量的水浇到每株植物上,但是否获得好收成,在科学和技艺上都是极其复杂的。

在水资源匮乏的新疆阿克苏地区,温宿县的农业局展示了他们著名的水稻作物的种植期海报,用一种不规则的锯齿图表显示了介于0-8厘米的稻田水层管理的16项干预条目。但这仅仅是该县城的理想。精明的农民都知道,每平方米稻田的水需求特质都未必相同。克利福德·格尔茨(Clifford Geertz)在1964年的巨作《农业内化:印尼的生态变迁过程》一文中,观察到人口的增长意味着活动的增加和更加注意打理稻田的水位,因而,增加的产出就直接和增加的人口相关。国际稻米研究所的乔·里奇曼(Joe Rickman)论证了关于改善水资源管理能够获得双倍产出的结论,有人提出疑问,他作出了回应并消除了疑虑:让农民对所有的投入和劳力的高质量投资充满信心,那么,改善水资源控制直接产生的20%的增产量就是一个恰当配置所有投入所带来的100%的基础增长。理论的推论就是,为什么要在水资源输入不可靠情况下购买投入和浪费那么多时间?

从自然河流,人工大坝到每颗种植的植物的根系的水,在这流水供给链中,水资源供给链的规划存在严重缺陷,缺陷甚至存在于规划者意识观念之中。对于农民来说,田地就是命根子,是主要收入,而事实上,他们生产粮食所增加的价值也被计入GDP。然而,特大工程项目和谦卑的农民之间的脱节,现象现在逐渐明显。

另外一个让人无法接受的原因是:水量配置总是存在‘‘对手’’,最佳的配置需要开阔的视野,甚至是在整个流域内进行,而且水量配置可能被行政边界所分割,在行政边界,人们有意或无意地模糊了沟通交流。

一种认为农田田水从主要水源获取并不需要科学和全面考虑的假定,让农业逐渐被剥夺了获得水的潜在可能性。从2011年开始,这种情形将完全改变。中国最高领导层已经启动了一项10年间投入4万亿元的计划,这将从根本上改善水资源二级配置,特别是有利于治理中的小河流和改善土地灌溉的服务。在这方面,一些国外的例子可以作为借鉴。

德国多瑙河上游就是由一个综合管理计划进行管理,从全盘的角度设计水资源流入的通道和取水的沟管。以农民为主导力量的利益相关者,有权使用计算机化数据,而且,由各方共同作出水资源最佳配置的决定。同时,在作物生长季节有可能做水资源预报,而它是决定种植何种作物的一项重要因素。

又比如澳大利亚在提供现代二级水资源配送系统方面起到了很好的示范作用,该系统让农民大大受益,并将一些干旱区变为粮仓例如,澳大利亚太平洋一侧的大分水岭有项工程。它通过收集有用降水并用地道输送到干旱的西坡,通过修建综合分层通道网,将水引入数百万公顷的农田。

始于20世纪90年代末期的长时间的干旱,影响了东澳大利亚的大部分地区,迫使州和一些联邦政府制订许多缓解干旱的政策。其中一项涉及该国灌溉水资源配送系统的现代化投资影响深远,该政策旨在改进配送效率和减少在水坝到农场传输过程中的水资源的大量流失。

现代效率

提高效率及和适时快速反应的认识推动了高科技科学系统的演变,这个系统由配有测量和管理软件的电子水闸、提供水闸启动动力的太阳电池板、泛网无线通信控制设备和一个由中央控制得计算机化管理系统组成,从布局凌乱的沟渠到现代科学的综合系统的快速转变是在该州政府工程师的推动下得以实现的,大卫·奥顿(David Aughton)率领一个由九名州水务的高级职员组成的团队,建立了一家有限公司(Rubicon  Water),开发了一项世界领先的新型技术,总管道控制(Total Channel Control)技术覆盖许多重要灌溉区,包括古尔本-默里(Goulburn-Murray)灌区——澳大利亚最大的灌溉区,管道总长度超过6000公里。奥顿先生在概括这种转变时说:“澳大利亚的干旱见证了灌溉水价在仅仅10年间上涨了50倍,现高效的投资将带来深刻的经济和环境意义。”Rubicon   Water 公司现在和中国水利部密切合作,在四个省开展试点项目,并着手与更多地方政府开展合作。该公司的CEO 布鲁斯·罗杰森(Bruce Rodgerson)曾说,“我们的总管道控制技术将通过增加产量,通过保证农民在需水时可以获得流向他们农地的水资源,从而使他们转向种植更高价值的作物而让中国农民兴旺致富。”

结语

中国的‘‘十二五’’期间正是4万亿元水力投资行动的前五年,随着‘‘十二五’’规划公布,关键的问题是要注意如何分配这4万亿元。‘‘一号文件’’所指受益者是那些要求供水量精确和供应及时的农民。而农民的受益并不能由地方政府通过简单地更多修建现有同样类型的临时渠道数量来实现。或许,即使是专门负责水资源或农业的地方政要有能力、有远见,或是手握着可以彻底改变水资源从主要水源到农民田地的大范围渠道配送权力的政权集团,他们也都无法实现。这需要一种全局的眼光,或许可以在国家发展和改革委员会的职权范围来协调流域管理和规划,用科学发展观来看待这个被忽视至今的关键性经济行业——农业。

The Number 1 Document of 2011, jointly issued by the Chinese Communist Party and State Council on the eve of the Chinese New Year correctly addresses what has been a fundamental problem in Chinese economic development which has left the agricultural sector behind and out of balance with the rest of the economy.  While many aspects of agriculture have leapt ahead, including seed strain quality, fertilizers and insect and weed control, farm mechanization, and especially efficient marketing, one thorny aspect was neglected, and even overlooked.  This is the distribution of water from main sources such as rivers and dams to the actual farm plots.  In retrospect the cause of neglect is recognizable.

For decades after the founding of modern China, farmland was organized by planners who, while in theory were well intentioned and had an overview of strategies, in practice often failed badly in oversight of details that only individuals close to the action can observe, understand and effectively respond to.  It was only the Responsibility System, pioneered around 1980 that unleashed the productive power of individual farm households.  Farmers adjudged the market, planted accordingly and tended their crops diligently.  Fertilizer application and pest/weed control were conducted with intricate consideration. Land leveling and tilling practices suited requirements.  Even sunshine and warmth could be harnessed with greenhouses for vegetables and nurturing the seedlings in the upper latitudes.  The one thing farmers had little control over was inputs to their farming culture of water. The two main sources were from the sky, or from ditches that has been dug long ago according to past agricultural regimen. If they existed and could be cost-benefitted, wells with powered pumps were the only on-site source a farmer might regulate. Thus water, as the lifeblood of the produce farmers relied on, was an external, peripheral input to farms and to farmers lives.

Ironically, China has for thousand of years treated the good management of water as a manifestation of the Mandate of Heaven.  Emperors who controlled floods and who alleviated drought effects withefficient water supply were admired, and failure to do so, leading to calamities, was a comment on leadership.  In the third century BC, a major engineering project brilliantly planned and implemented on the longest tributary of the Yangtze River turned 5,000square kilometers of dry farmland into rice paddies and a prime rice production base.  Governor Li Bin, the leader of the project, was subsequently revered as a god, and his statue and legends about him abound.  Modern day Chinese water engineers may model their life after him, competing to build grand schemes. Dam building in new China seems an unmitigated obsession, culminating in the world’s largest engineering project, The Three Gorges, and now eclipsed in scale of water management by the South-North Water Transfer project.  China needs macro-strategic planning of water management and allocation, and needs world class water engineers.  When the Sichuan earthquake struck in May 2008, even beyond the 70,000 deaths, there was a much greater danger of the “quake lakes” breaking and flooding downstream where millions lived.  It was the water engineers who helicoptered in dozens of bulldozers to the instant and accidental landslide dams to abate huge buildups of water pressure and volume.  The water engineers were heroes.

At the other end of the chain of water usage are the farmers, averaging a few mu per household, who desperately hope for access to water from ditches beside their paddocks.  The science and art of applying the right amount of water at the right time to each plant for best results is highly complex.  In water-scarce Xinjiang,Aksu Prefecture, the agricultural department of WensuCounty displays posters of the planting season for their famous rice crop, with an irregular sawtooth chart showing 16 interventions on managing paddy water level from 0 to 8 cm. This is merely the ideal for the county, and each astute farmer knows that for his plot, for each paddy square, there are idiosyncrasies in water requirements.  Clifford Geertz, in his 1964 seminal work, Agricultural Involution: The Processes of Ecological Change in Indonesia observed that increases in population meant increased activity and attention to tending the water levels of paddies, so that increased yields were directly related to increased population.  Joe Rickman at the International Rice Research Institute has a disarming response to questions about his proven results that better water management can double yields: Guaranteed application of the right amounts of water at the right time lead to farmer confidence in high quality investment in all inputs, and in labor, so that a 20% yield improvement directly attributable to better water control is the foundation for a 100% increase from all properly delivered inputs. The corollary is, why buy the best of any inputs and waste time too, when the water input is unreliable?

In the supply chain of running water, from natural rivers and man-made dams, down to the lifeblood at the roots of each farmed plant, there has been a serious gap in planning, and even in the consciousness of planners.  At the high profile upstream end of a giant project, engineers talk of fifty thousand cubic meters water flow per second. And at the vital final downstream end, farmer Lao Bai Xing is hoping he can get 10 cubic meters per mu onto his crop spread over certain days critical to growth.  And it is the farmer, and the value he adds to production that is counted in GDP.  The disconnect between megaproject and the lowly farmer is now becoming obvious and better understood.  The most obvious reasons are that water flows naturally downhill, that ditches are easy to dig with simple tools, and the pattern has evolved to be workable over hundreds or more years.  A more unpalatable reason is that there are always rivalries in water allocation, and optimal allocation requires a broad view, even a whole watershed, and it may be intersected by administrative boundaries where communication is inadvertently or deliberately not well managed.

The assumption that science and a comprehensive perspective are not needed to get water from primary sources to tertiary reticulation has left agriculture increasingly deprived of potential.  The vital secondary phase, between when waterways of 100 meters wide are subdivided to paddock inlets 10 centimeters wide has been neglected.  People of vision and of the right engineering and technical skills are not attracted, and certainly the budgets have not been there.  From the prefecture to county to shire to village, it has often been the least well trained left to maintain old ditches.  New works may have primitive surveying layouts, and the only option above manual labor may be an excavating machine following pegs that were laid out with no broad plan.

Starting 2011, this will all change. The highest level of leadership in China have initiated a plan to spend 4,000,000,000,000 yuan over ten years essentially aimed at this secondary tier of water allocation, specifically mentioning medium and small rivers, and improved services to irrigated land.  The UpperDanubeRiver in Germany is subject to a comprehensive management plan, and channels delivering water in and drains taking water away have been laid out from a holistic viewpoint.  Stakeholders, with farmers as the dominant force, have access to computerized data, and joint optimum decisions are made on water allocation. The forecasts of water likely to be available during the growing season are a factor in deciding what to plant.

Australia provides good models of modern second level water delivery systems that greatly benefit farmers and turn dry regions into food bowls.  Stemming from a primary engineering feat of capturing good rainfall from the Pacific Ocean side of the Great Dividing Range and tunneling through to the dry western slopes, the state of Victoria conscientiously constructed a comprehensive hierarchical network of channels to feed water to millions of hectares of farmland.

A prolonged drought affecting much of eastern Australia began in the late 1990s and led state and federal governments to develop a number of policy responses to mitigate its effects. Among them was a significant investment in the modernization of the country’s irrigation water delivery systems in order to improve their efficiency and reduce the massive amounts of water lost in transit from dams to farms.

The need for efficiency and the knowledge of the importance of timing and quick response drove the evolution of a high-tech scientific system that includes electronic water gates with in-built metering and management software and solar panels to power them, wireless communications for pan-network control and a computerized management system centrally controlled that can supply water in an hour instead of 4 days before modernization.  The rapid change from rambling ditches to a modern scientific integrated system was facilitated by former state government engineers who were first to see the need for change and established a private company to drive research and development.  David Aughton led a team of senior staff from the state water utility to found Rubicon Water and implement a new world-leading technology, Total Channel Control, across  a number of major irrigation districts, including the Goulburn-Murray Irrigation District -Australia’s largest, with over 6,000 km of channels. Aughton summed up the change: “The drought in Australia has seen the price of irrigation water increase 50-fold in just 10 years and now investing in efficiency makes strong economic and environmental sense.”  Rubicon is now working closely with China’s Ministry of Water Resources and has four pilot projects in the provinces and set to work with local authorities for more. Rubicon CEO Bruce Rodgerson added, “Our Total Channel Control technology will increase the prosperity of farmers in China by increasing yields and enabling them to diversify into higher value crops simply by making sure the water is at the farm when the farmer decides, when the crop needs it.”

Other country initiatives to modernize channel systems include the dry westerns states in the US and Israel. Yet no other country matches Australia as a model, with the Americans surprisingly lagging in integrated computerized channel management, and the Israelis driven by their harsh climate and security concerns supported by wealth to concentrate on piping water rather than the natural, much cheaper open channelling.

As the Twelfth Five Year Plan unfolds, and with the first half of this niche sectoral initiative for ten years nested within it, critical attention must be paid to how the 4 trillion yuan is allocated.  The beneficiaries targeted by State Council and the Chinese Communist Party in their No 1 Document are farmers demanding precise responses of water supplied by amount and on time.  That cannot be achieved by existing local authorities simply doubling up current practices with “more of the same” adhoc ditches.  Possibly neither the local arms specifically responsible for water or for agriculture have the capability, vision, or executive powers to revolutionize broad scale channel delivery of water from primary sources to the farmer’s plot.  It will take an overview, perhaps of the scope of the National Development and Reform Commission to coordinate basin management and plan totally new scientific development perspective to this critical, until now neglected, sector of the economy.